NuFuel & MMSNF 2015

First Workshop on Research into Nuclear Fuel in Europe
and Materials Modeling and Simulation for Nuclear Fuels Workshop
Karlsruhe, Germany, November 16th to 18th, 2015

Updated: Tue 08 Dec 2015, 14:27

Poster 5.5: Effects of stoichiometry on the defect clustering in uranium dioxide

Raoul Ngayam-Happy, Matthias Krack, Andreas Pautz
  • Paul Scherrer Institute, CH–5232 Villigen PSI, Switzerland

Abstract

The study addresses the on-going topic of point defects and point defect clusters in uranium dioxide. Molecular statics simulation using an extended pair potential model that accounts for disproportionation equilibrium as charge compensation has been applied to assess the effect of disproportionation on structural properties and clustering in non-stoichiometric uranium dioxide. The defective structures are scanned in minute detail using a powerful and versatile analysing tool, called ASTRAM, developed in-house for the purpose. Unlike pair potential models ignoring disproportionation effects, our model reproduces volume changes observed experimentally in non-stoichiometric UO(2-x) and UO(2+x). The oxygen defect energetics computed is in good agreement with data in the literature. The model is used to assess the clustering that occurs in bulk samples of non-stoichiometric uranium dioxide. This study confirms the generation of split-interstitial clusters as the dominant defect type in non-stoichiometric uranium dioxide. A new key mechanism for defect clustering in hyper-stoichiometric uranium dioxide is proposed that is based on the progressive aggregation of primitive blocks identified as 1-vacancy split-interstitial clusters.